Leçon 125: Extensions de corps. Exemples et application.

RM 2022-2023

Les corps introduit sont supposés commutatif sauf mention particulière.

1 Extensions de corps

1.1 Définition

Définition 1: Soient \mathbb{K}, \mathbb{L} des corps. On dit que \mathbb{L} est une extension de corps de \mathbb{K} , si il existe un morphisme de corps non nul (nécessairement injectif) $i : \mathbb{K} \to \mathbb{L}$. On note \mathbb{L}/\mathbb{K} pour dire que \mathbb{L} est une extension de corps de \mathbb{K} .

Remarque 2: • Comme i est injectif, on a $i(\mathbb{K})$ est isomorphe à \mathbb{K} et comme $i(\mathbb{K})$ est un sous-corps de \mathbb{L} , \mathbb{K} un sous-corps de \mathbb{L} à isomorphisme près.

• Réciproquement, si \mathbb{K} est un sous-corps de \mathbb{L} , alors \mathbb{L} est une extension de corps de \mathbb{K} en considérant l'injection canonique.

Exemple 3: \mathbb{C} est une extension de \mathbb{R} qui est lui même une extension de \mathbb{Q} . $\mathbb{R}[X]$ est une extension de \mathbb{R} .

Proposition 4: Si \mathbb{L}/\mathbb{K} une extension de corps, alors L est un \mathbb{K} -espace vectoriel.

Définition 5: Si $dim_{\mathbb{K}}\mathbb{L}$ est finie, on pose $[\mathbb{L} : \mathbb{K}] = dim_{\mathbb{K}}\mathbb{L}$ et l'entier $[\mathbb{L} : \mathbb{K}]$ s'appelle le degré de \mathbb{L} sur \mathbb{K} , ou degré de l'extension. On parle alors d'extension finie.

Exemple 6: • Si \mathbb{K} et \mathbb{L} sont des corps finis, on a $|\mathbb{L}| = |\mathbb{K}|^n$ avec $n = [\mathbb{L} : \mathbb{K}]$.

 \bullet Comme $\mathbb C$ est un $\mathbb R\text{-espace}$ vectoriel de dimension 2, on a que le degré de l'extension $\mathbb C/\mathbb R$ est 2.

Théorème (de la base télescopique) 7: Soient deux extension de corps \mathbb{M}/\mathbb{L} et \mathbb{L}/\mathbb{K} , $(e_i)_{i\in I}$ une base de \mathbb{L} sur \mathbb{K} , $(f_j)_{j\in J}$ une base de \mathbb{M} sur \mathbb{L} . Alors la famille $(e_if_j)_{(i,j)\in I\times J}$ est une base de \mathbb{M} sur \mathbb{K} .

Corollaire 8: Si les extensions sont finies, alors on a $[\mathbb{M} : \mathbb{K}] = [\mathbb{M} : \mathbb{L}][\mathbb{L} : \mathbb{K}]$.

Définition 9: 1) Soit \mathbb{L}/\mathbb{K} une extension et A une partie de \mathbb{L} . On dit que A engendre \mathbb{L} sur \mathbb{K} et on écrit alors $\mathbb{L} = \mathbb{K}(A)$ si \mathbb{L} est le plus petit sous-corps de \mathbb{L} contenant \mathbb{K} et \mathbb{A} . Si A est fini, $A = \{\alpha_1, ..., \alpha_n\}$, on note $\mathbb{L} = \mathbb{K}(\alpha_1, ..., \alpha_n)$.

2) L'extension \mathbb{L}/\mathbb{K} est dite monogène s'il existe $\alpha \in \mathbb{L}$ tel que $\mathbb{L} = \mathbb{K}(\alpha)$.

Remarque 10 : On a pas $\mathbb{K}[\alpha] = \mathbb{K}(\alpha)$ mais $\mathbb{K}[\alpha] \subset \mathbb{K}(\alpha)$, car $\mathbb{K}[\alpha]$ est le sous-anneau de \mathbb{L} engendré par \mathbb{K} et α .

1.2 Extensions et éléments algébriques

Définition 11: Soit \mathbb{L}/\mathbb{K} une extension et soit $\alpha \in \mathbb{L}$. Soit $\varphi : \mathbb{K}[T] \to \mathbb{L}$ le morphisme défini par $\varphi_{|\mathbb{K}} = id_{\mathbb{K}}$ et $\varphi(T) = \alpha$.

- 1) Si φ est injectif, alors on dit que α est transcendant sur \mathbb{K} .
- 2) Sinon, on dit que α est algébrique sur \mathbb{K} . Cela signifie qu'il existe un polynôme non nul $P \in \mathbb{K}[T]$ tel que $P(\alpha) = 0$.

Exemple 12: i et $\sqrt{2}$ sont algébriques sur \mathbb{Q} . e et π sont transcendants sur \mathbb{Q} .

Proposition 13: Si α est algébrique sur \mathbb{K} , alors $Ker\varphi$ est un idéal principal non nul. Donc il existe P unitaire telle que $Ker\varphi = (P)$. On appelle P le polynôme minimal de α sur \mathbb{K} .

Exemple 14: Les polynômes minimaux de $\sqrt{2}$ et i sont $X^2 - 2$ et $X^2 + 1$.

Proposition 15: Si α est transcendant, on a $\mathbb{K}[\alpha] \cong \mathbb{K}[T]$ et $\mathbb{K}(\alpha) \cong \mathbb{K}(T)$.

Théorème 16 : Soit \mathbb{K}/\mathbb{L} une extension et $\alpha \in \mathbb{L}$. Les propriétés suivantes sont équivalentes : i) α est algébrique sur \mathbb{K} .

ii) on a $\mathbb{K}[\alpha] = \mathbb{K}(\alpha)$.

iii) on a $dim_{\mathbb{K}}\mathbb{K}[\alpha] < +\infty$. Plus précisément, on a $\dim_{\mathbb{K}}\mathbb{K}[\alpha] = [\mathbb{K}[\alpha] : \mathbb{K}] = deg(P)$ ou P est le polynôme minimal de α .

Exemple 17 : Comme le polynôme minimal de $\sqrt{2}$ est X^2-2 de degré 2, on a que $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$.

Définition 18: Une extension \mathbb{L}/\mathbb{K} est dite algébrique si pour tout $\alpha \in L$, α est algébrique sur \mathbb{K} .

Exemple 19 : \mathbb{C} est donc une extension algébrique de \mathbb{R} car tout élément z de \mathbb{C} , il existe un polynôme $P \in \mathbb{R}[X]$ tel que P(z) = 0.

Théorème 20 : Soit \mathbb{L}/\mathbb{K} une extension et posons $M = \{x \in \mathbb{L} | x \text{ est algébrique sur } \mathbb{K}\}$. Alors M est un sous-corps de \mathbb{L} .

 $Remarque\ 21:$ On déduit du théorème 16 que toute extension finie est algébrique, mais la réciproque est fausse.

Par exemple, $A = \{\alpha \in \mathbb{C} | \alpha \text{ algébrique sur } \mathbb{Q} \}$ est une extension algébrique de \mathbb{Q} ,

mais pas finie car on a que $\sqrt[n]{2}$ est dans A pour n aussi grand que l'on veut, et donc le polynôme minimal X^n-2 est de degré aussi grand que l'on veut.

2 Extension de corps et polynômes

2.1 Corps de décomposition et corps de rupture

Théorème 22 : Soit \mathbb{K} un corps et $P \in \mathbb{K}[X]$. On a que $\mathbb{K}[X]/(P)$ est un corps si et seulement si le polynôme P est irréductible.

Définition 23: Soit \mathbb{K} un corps, $P \in \mathbb{K}[X]$ un polynôme irréductible. Une extension \mathbb{L}/\mathbb{K} est appelée un corps de rupture de P sur \mathbb{K} si \mathbb{L} est une extension monogène $L = \mathbb{K}(\alpha)$ avec $P(\alpha) = 0$.

Théorème 24 : Soit $P \in \mathbb{K}[X]$, irréductible. Il existe un corps de rupture de P sur \mathbb{K} , unique à isomorphisme près.

Remarque 25 : Il suffit de considérer $\mathbb{K}[X]/(P)$ qui fonctionne bien d'après le théorème 22.

Remarque 26 : P n'est pas forcément factorisé sur un corps de rupture \mathbb{L} . Par exemple, si $P = x^3 - 2 \in \mathbb{Q}[X]$, on a que $\mathbb{L} = \mathbb{Q}(\sqrt[3]{2})$ qui ne contient pas $j\sqrt[3]{2}$.

Exemple 27: $\mathbb{C} = \mathbb{R}[X]/(X^2+1)$ est un corps de rupture de X^2+1 , $\mathbb{Q}(\sqrt[3]{2}) = \mathbb{Q}[X]/(X^3-2)$ est un corps de rupture de X^3-2 .

Théorème 28 : Soit $P \in \mathbb{K}[X]$ de degré n. Alors, P est irréductible sur \mathbb{K} si et seulement si P n'a pas de racines dans les extension \mathbb{L} de \mathbb{K} qui vérifie $[\mathbb{L} : \mathbb{K}] \leq n/2$.

Exemple 29: Comme $X^4 + X + 1$ est n'a pas de racine dans \mathbb{F}_2 et \mathbb{F}_4 , alors il est irréductible dans \mathbb{F}_2 .

Théorème 30 : Soit $P \in \mathbb{K}[X]$ un polynôme irréductible de degré n et soit \mathbb{L} une extension de degré m avec $m \wedge n = 1$. Alors P est encore irréductible sur \mathbb{K} .

Exemple 31: Comme $X^3 + X + 1$ est irréductible sur \mathbb{Q} , alors il est aussi irréductible sur $\mathbb{Q}(i)$.

 $m{D\'efinition}$ 32 : Soit $P \in \mathbb{K}[X]$ un polynôme, irréductible ou non, de degré n. On appelle corps de décomposition de P sur \mathbb{K} une extension de \mathbb{L} sur \mathbb{K} qui est telle que :

1) Dans $\mathbb{L}[X]$, P est produit de facteurs de degré 1 (ou encore P a toutes sas racines dans \mathbb{L}).

2) Le corps \mathbb{L} est minimal pour cette propriété (ou encore, les racines de P engendrent \mathbb{L}).

Théorème 33: Pour tout $P \in \mathbb{K}[X]$, il existe un corps de décomposition de P sur \mathbb{K} , unique à isomorphisme près. On le note $D_{\mathbb{K}}(P)$.

Exemple 34: Pour $\mathbb{K} = \mathbb{Q}$, on a pour $P(X) = X^3 - 2$ que $D_{\mathbb{Q}}(P) = \mathbb{Q}(\sqrt[4]{2}, j)$ et $P(X) = X^4 - 2$ que $D_{\mathbb{Q}}(P) = \mathbb{Q}(\sqrt[4]{2}, i)$.

2.2 Clôture algébrique

 $D\'{e}finition~35$: Un corps $\mathbb K$ est dit algébriquement clos s'il vérifie l'une des conditions équivalentes suivantes :

- Tout polynôme $P \in \mathbb{K}[X]$ de degré ≥ 1 admet une racine dans \mathbb{K} .
- Tout polynôme $P \in \mathbb{K}[X]$ est produit de polynôme de degré 1.
- Les éléments irréductible de $\mathbb{K}[X]$ sont les $X-a, a \in \mathbb{K}$.

Si une extension \mathbb{L}/\mathbb{K} est algébrique, on a $\mathbb{L} = \mathbb{K}$.

 $Exemple/Th\'eor\`eme~36$: Le corps $\mathbb C$ est algébriquement clos.

Définition 37: Une extension $\overline{\mathbb{K}}$ est appelée clôture algébrique de \mathbb{K} si $\overline{\mathbb{K}}$ est algébriquement clos et $\overline{\mathbb{K}}$ est algébrique sur \mathbb{K} .

Exemple 38 : $\mathbb C$ est une clôture algébrique de $\mathbb R$, A est une clôture algébrique de $\mathbb O$.

Théorème (de Steinitz) 39 : Tout corps admet une clôture algébrique, à isomorphisme près.

3 Applications

3.1 Construction des corps finis

Définition 40: On note $\mathcal{U}_n(p)$ l'ensemble de tous les polynômes unitaires irréductibles de degré n dans $\mathbb{F}_p[X]$ et $I_n(p)$ le cardinal de $\mathcal{U}_n(p)$. On pose le polynôme $P_n(X) = X^{p^n} - X \in \mathbb{F}_p[X]$.

Exemple 41: Comme tous les polynômes $P(X) = X - \lambda$ sont irréductible pour $\lambda \in \mathbb{F}_p$, on a $I_1(p) = p$.

Remarque 42: Si $P \in \mathcal{U}_n(p)$, on a donc que $\mathbb{F}_p[X]/(P)$ est un corps fini de cardinal p^n . On peut le voir comme une extension de corps de \mathbb{F}_p de degré n avec comme base

 $(\overline{X}^k)_{0 \le k \le n-1}$.

De cette manière, on peut associer l'existence de corps finis à l'existence de polynômes irréductibles.

Lemme 43: Tout diviseur irréductible de P_n dans $\mathbb{F}_p[X]$ est de degré divisant n. Réciproquement, pour tout diviseur d de n, tout polynôme $P \in \mathcal{U}_d(p)$ divise P_n .

Théorème 44: Le polynôme P_n est sans facteur carré dans $\mathbb{F}_p[X]$ et on a la décomposition en facteur irréductible, $P_n(X) = X^{p^n} - X = \prod_{d|n} \prod P \in \mathcal{U}_d(p)P$.

Remarque 45: On peut alors compter le nombre de polynôme irréductible dans $\mathbb{F}_p[X]$. Par exemple, le nombre de polynômes irréductible de degré 2 dans $\mathbb{F}_2[X]$ est de 1, et c'est $X^2 + X + 1$.

Développement 46: Pour tout entier naturel non nul n, on a $nI_n(p) = \sum_{d|n} \mu(d)p^{n/d}$. **Dev 1**

Corollaire 47: Il existe des polynômes irréductibles de degré n dans $\mathbb{F}_p[X]$.

Théorème 48: A un isomorphisme près, il n'existe qu'un seul corps à p^n éléments, c'est le corps $\mathbb{F}_{p^n} = \mathbb{F}_p[X]/(P)$ où $P \in \mathcal{U}_n(p)$.

Remarque 49 : L'avantage est ici que en plus de l'existence des corps finis, on a une construction. On peut avoir l'existence et l'unicité sans méthode constructive, par exemple :

Théorème 50: Il existe un corps \mathbb{K} à $q=p^n$ élément ou p premier et $n\in\mathbb{N}^*$, c'est le corps de décomposition du polynôme X^q-X sur \mathbb{F}_p . Il est unique à isomorphisme près.

3.2 Polynôme cyclotomique

Définition 51: Soit \mathbb{K} un corps et $n \in \mathbb{N}^*$. On pose $\mu_n(\mathbb{K}) = \{\zeta \in \mathbb{K} | \zeta^n = 1\}$ l'ensemble des racines n-èmes de l'unité et $K_n = D_{\mathbb{K}}(X^n - 1)$. On pose de plus $\mu_n^*(\mathbb{K}_n) = \{\zeta \in \mathbb{K}_n | \zeta^n = 1 \text{ et } \zeta^d \neq 1 \text{ pour } d < n\}$ l'ensemble des racines primitives n-èmes de l'unité.

Proposition 52: On a $|\mu_n^*(\mathbb{K}_n)| = \varphi(n)$ et si $\zeta \in \mu_n^*(\mathbb{K}_n)$, alors ζ^m l'est aussi si et seulement si $m \wedge n = 1$.

Définition 53: On définit le n-ème polynôme cyclotomique $\Phi_{n,\mathbb{K}} \in \mathbb{K}_n[X]$ est donné

par la formule:

$$\Phi_{n,\mathbb{K}}(X) = \prod_{\zeta \in \mu_n^*(\mathbb{K}_n)} (X - \zeta).$$

Remarque 54 : Sur \mathbb{Q} , comme le corps de décomposition de X^n-1 est \mathbb{C} , on a les racines n-èmes de l'unité "classiques".

Proposition 55: On a que $X^n - 1 = \prod_{d|n} \Phi_d(X)$.

Exemple 56: On a $\Phi_1(X) = X - 1$, $Phi_2(X) = X + 1$, $\Phi_3(X) = X^2 + X + 1$, $\Phi_p(X) = X^{p-1} + ... + X + 1$ pour p premier.

Proposition 57: On a $\Phi_{n,\mathbb{O}}(X) \in \mathbb{Z}[X]$.

Développement 58 : $\Phi_n(X)$ est irréductible sur $\mathbb{Z}[X]$ (et donc dans $\mathbb{Q}[X]$).

Dev 2

Application 59: Soit K une extension finie de \mathbb{Q} . Il y a alors un nombre fini de racines de l'unité dans \mathbb{K} .

Corollaire 60 : Si ζ est une racine primitive n-ème de l'unité dans un corps de caractéristique nulle, alors son polynôme minimal sur \mathbb{Q} est Φ_n , et donc on a $[\mathbb{Q}(\zeta):\mathbb{Q}] = \varphi(n)$.

Références:

- 1. Cours d'algèbre Perrin
- 2. Algèbre et géométrie Rombaldi